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1 Introduction

Both historically and in this class, great effort has been put into proving modularity lifting the-
orems. But in order to use these, we need some starting point. In Wiles’s (and Taylor-Wiles’s)
proof of Fermat’s Last Theorem, the main starting point is the Langlands-Tunnell theorem. The
following is a very rough schematic of how modularity is generated and propagated around.

Langlands-Tunnell
(a)

=⇒ ρE,3 is modular (1)

(b)
=⇒ some lift ρ0 : GQ → GL2(OL) of ρE,3 is modular (2)

(c)
=⇒ ρE,3 is modular (3)

(d)
=⇒ E is modular. (4)

To explain the statements above: E/Q is an elliptic curve, ρE,p denotes the representation

GQ → GL2(Fp) given by the Galois action on the p-torsion of E(Q), and ρE,p is the represen-
tation GQ → GL2(Zp) given by the action on the Tate module, which lifts ρE,p.

One definition of modularity of ρE,3 is that it is the reduction mod 3 of a Galois represen-
tation coming from a modular form; we’ll work with another definition in the next section.
Modularity of E means that there exists a weight two modular form f(z) =

∑∞
n=1 ane

2πinz

with aq = q + 1 −#E(Fq) for almost all primes q. Equivalently, this means that at least one,
and equivalently all, p-adic representations of GQ given by TpE (or H1

ét(E,Qp)), agree with the
representations ρf,p coming from f .

The implication (a) holds under the hypothesis that ρE,3 is irreducible. This involves a mostly
elementary argument, taking one theorem of Deligne and Serre as an input. We will mostly
focus on this step today.

∗Notes for a talk given in a shadow seminar for Sug Woo Shin’s course on Galois representations at Berkeley.
Main reference: Gelbart, Three lectures on the modularity of ρE,3 and the Langlands Reciprocity Conjecture.
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Aside: for the case where ρE,3 is reducible, we need a different argument. Wiles filled this
gap using the 3/5 switch.

Implication (b) holds more or less definitionally. (Modularity of ρE,3 means that ρE,3 is the
reduction mod 3 of some Galois representation ρf,3 induced by a modular form, so we can
take ρ0 to be ρf,3 itself.) Implication (c) involves modularity lifting, which obviously takes a
lot of work. (Wiles uses a modularity lifting theorem that requires the restriction of ρE,3 to

Gal(Q/Q(
√
−3)) to be absolutely irreducible, which follows from irreducibility of ρE,3 in this

case.) Implication (d) is also basically definitional, depending on which version of the definition
you use.

2 Langlands-Tunnell and modularity of ρE,3

We would like to show the following:

Theorem 2.1. Given an elliptic curve E/Q, if ρE,3 is irreducible, then it is modular. That is,
there exists a normalized eigencuspform f(z) =

∑∞
n=1 ane

2πinz of weight two and a prime λ of
Q such that aq ≡ tr(ρE,3(Frobq)) (mod λ) for almost all primes q.

Langlands-Tunnell gives us this:

Theorem 2.2. Suppose σ : GQ → GL2(C) is an odd irreducible representation with solvable
image in PGL2(C). Then there exists a normalized eigencuspform g(z) =

∑∞
n=1 bne

2πinz such
that bq = tr(σ(Frobq)) for almost all primes q.

Remark: Since the image in GL2(C) is automatically finite, and we have a nice classifica-
tion of the finite subgroups of PGL2(C), there are essentially only three cases: the projective
image can be dihedral, tetrahedral (A4), or octahedral (S4). (The icosahedral case doesn’t have
solvable image.) The first case is essentially due to Hecke and Maass, the second to Langlands,
and the third to Tunnell.

In order to prove (2.1) using (2.2), we must do three things:

1. Use ρE,3 to produce a σ (with a compatible trace) satisfying the hypotheses of (2.2).

2. Apply (2.2).

3. Tweak the resulting modular form to make it weight-two instead of weight-one.

We’ll sketch the proof, taking one result of Deligne and Serre as a black box in part (3).

Step 1 : Let ρE,3 : GQ → GL2(F3) be given. Produce a representation σ : GQ → GL2(C)

by composing ρE,3 with the injection Ψ : GL2(F3)→ GL2(Z[
√
−2]) ⊂ GL2(C) defined by

Ψ

(
−1 1
−1 0

)
=

(
−1 1
−1 0

)
, (5)

Ψ

(
1 −1
1 1

)
=

(
1 −1

−
√
−2 −1 +

√
−2

)
. (6)
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Notice that if we reduce Z[
√
−2] modulo 1 +

√
−2, Ψ becomes the identity map GL2(F3) →

GL2(Z[
√
−2]/(1 +

√
−2) ≡ F3). In particular, Ψ respects traces and determinants modulo

(1 +
√
−2).

To see that σ = Ψ ◦ ρE,3 satisfies the hypotheses of Langlands-Tunnell, first observe that
the “solvable image” criterion comes for free, as GL2(F3) itself is solvable. (This is the reason
why it is necessary to use the prime 3: GL2(Fq) is only solvable for q = 2, 3, and 2 is bad for
many reasons.) Next recall that ρE,3 is odd. (This follows from the fact that det ρE,p ≡ µp as
Galois representations, which can be proved using a Weil pairing on E[p].) Since Ψ respects
determinants mod 1+

√
−2, and det σ(τ) is a priori ±1 (where τ ∈ GQ is complex conjugation),

we get that detσ(τ) = −1; that is, σ is odd as well.

Finally, we need to show that σ is irreducible, assuming that ρE,3 is. To do this, suppose
the contrary. Then, since σ is a representation in characteristic 0 factoring through a finite
group, it is completely reducible, and thus it must be a sum of two characters. It follows that
σ has abelian image, so ρE,3 does too, as Ψ is injective. Now recall that because complex con-
jugation has order 2, ρE,3(τ) must have eigenvalues ±1, and in fact the two eigenvalues must

have opposite signs by oddness. So we can write ρE,3(τ) =

(
1 0
0 −1

)
after some conjugation

in GL2(F3). Since ρE,3 is irreducible over F3, its image contains a non-diagonal matrix. Such a
matrix cannot commute with ρE,3(τ), so we have a contradiction, and σ is indeed irreducible.

Step 2 : Applying Langlands-Tunnell, we get a normalized eigencuspform g(z) =
∑∞

n=1 bne
2πinz

of weight 1 such that bq = tr(σ(Frobq)) for almost all primes q. Note that since Ψ preserves
traces mod 1 +

√
−2, this is the same as tr(ρE,3(Frobq)) mod 1 +

√
−2. If g had weight 2, we

would be done. But it doesn’t, so we need to work some more.

Step 3 : To increase the weight of our form, we will multiply it by another modular form.
Specifically, we multiply it by the Eisenstein form E(z) = 1 + 6

∑∞
n=1

∑
d|n χ(d)e2πinz, where

χ = χ3 is the Dirichlet character mod 3. This is a weight-1 modular form, albeit not cuspidal.
Since the non-constant Fourier coefficients of E(x) are all divisible by 3, we see that g(z)E(z)
is a weight-2 cuspform whose Fourier coefficients agree with g(z) mod 3. Finally, a theorem of
Deligne and Serre tells us that in such a situation (where g(z)E(z) is congruent to the eigenform
g(z) mod 3), we can “deform” g(z)E(z) modulo a specified prime over 3 to obtain a weight-2
normalized eigencuspform f(z). By construction, the Fourier coefficients of f(z) agree with
those of g(z) modulo some prime over 3, so we have proved Theorem 2.1.

3 Reformulation of Langlands-Tunnell

In order to prove Langlands-Tunnell, it is useful to reformulate it in a more Langlandsy way.

Theorem 3.1. Given an irreducible representation σ : WF → GL2(C) with solvable image
in PGL2(C), there exists a corresponding automorphic cuspidal representation π(σ) = ⊗′πv of
GL2(AF ) with central character detσ, such that tr tπv = trσ(Frobv) for almost all v. (Conjec-
turally, the solvable image assumption is unnecessary.)
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Before attempting to prove it, or even explain how it relates to the earlier statement, let’s
first understand the statement. The Langlands class tπv is a conjugacy class in GL2(C) that
corresponds naturally to the unramified representation πv of GL2(Fv). We have seen this before:
one representative of this conjugacy class is just the diagonal matrix whose entries are the two
Satake parameters of πv. So tr tπv is the sum of the two.

Another issue: we have worked a fair amount with Weil groups of p-adic fields, but what
is the Weil group of a number field? Tate’s Number theoretic background gives a general def-
inition for F any local or global field. A Weil group of F is a group WF equipped with a
homomorphism WF → GF with dense image, and equipped with an isomorphism of topological
groups W ab

E
∼= CE for all E/F finite. Here, WE is the preimage of GE in WF , “ab” denotes

quotienting by the closure of the commutator subgroup, and CE denotes E× in the local case
and A×E /E× in the global case. This data is required to satisfy various compatibility conditions,
which turn out to determine WF uniquely.

Here’s what we’ll need to know about Weil groups of number fields: for F a number field,
WF is a topological group equipped with a natural surjection onto GF . If E is a finite Galois
extension of F , then WE is an open subgroup of WF with quotient isomorphic to Gal(E/F ) in
the obvious way.

We’ll only need a very special case of the theorem above: assume that F = Q and that σ
factors through GQ via an odd representation GQ → GL2(C). But stating the theorem as we
did is useful, partly for the sake of further generalizations, but also because the proof crucially
relies on inducting from one number field to another.

Why does Theorem 3.1 imply our earlier version of Langlands-Tunnell, Theorem 2.2? We need
to know that an automorphic cuspidal representation of weight one gives rise to a normalized
eigencuspform of weight one. In fact, this is true:

Fact 3.2. There is a bijective correspondence between normalized newforms f(z) ∈ S1(Γ0(N), ψ)
and automorphic cuspidal representations π = ⊗′πp of weight one. For all p - N , this correspon-
dence identifies the Hecke eigenvalues ap of f with the sum of the Satake parameters µ1(p)+µ2(p)
of πp.

(This generalizes, in some sense, to all weights, but we only need this version.) As a result of
this correspondence, it suffices to prove the reformulated Langlands-Tunnell theorem, working
with automorphic representations instead of modular forms.

4 Proof idea of Langlands-Tunnell

Believe it or not, some of the ideas of this proof were sketched in a guest lecture way back on
February 11. The biggest tool here is global base change. I’ll sketch the construction of π(σ),
but omit the proof of correctness, including some matrix calculations as well as more serious
arguments involving automorphic forms, L-functions, and so on.
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We’re given a representation σ : WF → GL2(C), and we want to find a “corresponding”
automorphic representation π(σ) of GL2(AF ). If E is a cyclic extension of F , then the theory
of base change tells us we want BCE/F (π(σ)) to “correspond” to π(σ|WE

). If we have already
constructed π(σ|WE

), then we can hope to construct π(σ) as one of the π that base change to
it. This is plausible, because we can choose E such that σ|WE

has a smaller projective image
than σ itself.

As mentioned earlier, there are three cases: dihedral, tetrahedral, and octahedral images in
PGL2(C). The dihedral case was essentially done by Hecke and Maass long ago. Let’s try to
identify π(σ) in the tetrahedral case. The projective image of σ in this case is A4, which has a
convenient normal subgroup V4, the Klein four-group. So we can build the diagram

1 // WE
//

����

WF
//

����

Gal(E/F ) //

∼
��

1

1 // V4
// A4

// Z /3 // 1

where E is whatever cubic extension of F has the correct Weil group. Now σ|WE
has dihedral

(V4 = D4) projective image, so π(σ|WE
) is already known to exist. By base change theory, there

are exactly three cuspidal representations π of GL2(AF ), each a twist of the others. One can
show that exactly one of the three has the correct central character detσ, and this is the one
we choose.

In the octahedral case, we do much the same thing. We define the extension E/F by the
diagram

1 // WE
//

����

WF
//

����

Gal(E/F ) //

∼
��

1

1 // A4
// S4

// Z /2 // 1

Now σ|WE
is tetrahedral, so the previous case proved the existence of π(σ|WE

), at least modulo
the actual proof. So we just need to choose π(σ) from among the cuspidal automorphic rep-
resentations π base changing to π(σ|WE

). But there’s a problem: there are two of these, and
they have exactly the same central character! Which one do we use?

Langlands couldn’t resolve this issue in generality, and this is where Tunnell made his con-
tribution. Tunnell used a newer type of base change due to Jacquet, Piatetski-Shapiro, and
Shalika, which is valid for cubic extensions that are not necessarily Galois. Roughly speaking,
this allowed him to induct from D8 to S4 instead of from A4.
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